

Statistical Optical Link Analysis

Hua Xie and Kar-Ming Cheung Jet Propulsion Laboratory, California Institute of Technology March 04-10, 2019

> 2019 IEEE Aerospace Conference Big Sky, Montana

Outline of Talk

NTRODUCTION

STATISTICAL LINK ANALYSIS

- STATISTICAL RF LINK ANALYSIS
- EXTENSION TO STATISTICAL OPTICAL LINK ANALYSIS
 - Sources of Signal and noise power fluctuations
 - OPTICAL LINK EQUATION AND LINK MARGIN

SIMULATIONS AND MODELING

- Signal and noise power modeling
- STATISTICALLY ADJUSTED CODED PERFORMANCE OF SCPPM AND MARGIN

CONCLUSION AND FUTURE WORK

Introduction

- Statistical link analysis is a useful tool to leverage knowledge about link parameter uncertainties to optimize achievable data rates
 - Traditional Statistical RF Link Analysis
 - Additive nature of RF link equation (in dB domain)
 - Gaussian approximation used for the received Signal to Noise Ratio (SNR) for quiescent links, e.g. X-band, S-band, UHF, etc.
 - Link margin policies are based on the standard deviation of the SNR.
 - Statistical Optical Link Analysis
 - No closed form representation that maps the received signal power and noise power to achievable data rates
 - Optical link uncertainties often have non-Gaussian, dominant link parameters, e.g., pointing or turbulence induced fading
- The fundamental differences between an optical link equation and RF link equation does not lend us to develop a straightforward extension
 - We simulated and obtained coded performance curves for a fairly wide range of operational signal and noise levels
 - We adopted numerical methods to incorporate signal and noise power distribution models
- Simulation results reveal some interesting facts about effects of signal and noise fluctuation for several different operational scenarios.

Statistical Link Analysis: RF links

- RF link equation
 - The capacity of power constrained RF Gaussian Channel (for quiescent links) is a linear function of received Signal to Noise Ratio

$$C_{RF} \approx \frac{1}{\ln(2)} \frac{P_r}{kT}$$
 (b/s)

 RF link analysis tabulates the signal and noise power to estimate the link SNR, which can be represented as an additive equation in the dB domain

$$\frac{P_r}{kT} = EIRP + G - kT - L_{range} - L_o$$

EIRP: effective isotropic radiator power of the transmitter.

G: includes all the gain and loss terms on the receiver side

 L_{range} : space loss

 L_o : loss incurred from transmission media, e.g., atmospheric loss

- Traditional Statistical RF Link Analysis (for quiescent links)
 - Gaussian approximation can be used for the received Signal to Noise Ratio (SNR)
 - Mean and variance equal to the sum of the means and variances of the link parameters
 - Central limit theorem, and Lyapunov's condition
 - Link can be designed based on the statistical confidence levels measured in terms of the standard deviation of received SNR.

 Pre-decisional information, for planning and discussion only

Statistical Link Analysis: Optical links

The capacity of the Poisson PPM channel

$$C_{OPT} = \frac{1}{MT_s} (D(p_1||p_0) - D(p_y||p_{y|0}))$$
 (b/s)

D(f||g): relative entropy

 p_0, p_1 : probability mass functions of a noise and signal slot

 $p_{y_i} p_{y|0_i}$: probability mass functions of a random PPM symbol and a noise vector

- Except for the noiseless case, this equation requires approximation of a multidimensional infinite sum or a Monte-Carlo simulation
- An approximate optical PPM link equation exists which combines a number of bounds on optical capacity

$$C_{OPT} \approx \frac{1}{\varepsilon \ln(2)} \left(\frac{P_r^2}{P_r \frac{1}{\ln(M)} + P_n \frac{2}{M-1} + P_r^2 \frac{MT_S}{\ln(M)\varepsilon}} \right)$$

 $P_{r_i} P_{n_i}$: detected signal and noise power

- Statistical Optical Link Analysis
 - Straightforward extension of statistical analysis does not apply unless we define either signal-dominant or noise dominant regime.
 - During a deep space optical link pass, it may sweep over both regimes.
 - We need to perform separate modeling of signal and noise distributions

Sources of uncertainties: signal power budget

Received signal power in a free space optical link (in dB domain)

$$P_r = P_t + G_t + G_r - L_s - L_{atm} - L_{pt} - L_t - L_r$$

 P_t : transmitted power

 G_t : transmitter gain

 G_r : receiver gain

 L_s : range loss

 L_{atm} : atmospheric loss

 L_{pt} : pointing loss

 L_t : transmitter related loss

 L_r : receiver related loss

Space and Ground Terminals

- Transmitter related loss
 - Optical coupling loss, propagation loss through the optical system, etc.
- Receiver related loss
 - Filter transmission loss, polarization loss, and coupling loss
- The distribution models of terminal related losses are system specific
 - They can be measured and characterized once the transmitter and receiver design is determined.

Sources of uncertainties: signal power (cont'd.)

Pointing Error and Jitter

- Pointing loss
 - Pointing error results in a static loss
 - Pointing jitter causes uncertainties in the pointing loss term, leading to pointinginduced fading in received signal power

Atmospheric loss

- Signal attenuation caused by absorption and scattering
- The MODerate resolution atmospheric TRANsmission (MODTRAN) simulation tool can be used to predict the distribution model of the atmospheric loss under a range of weather conditions.
- Turbulence-induced fading
 - Clean air turbulence causes random fluctuations in received signal power
 - Beam wandering effects also lead to variations in encircled signal power
 - Adaptive optics and aperture averaging can reduce these effects
 - Analysis models exist for the fading process
 - The turbulence refraction index can be inferred based on weather availability assumption

Sources of uncertainties: noise power

- Noise source
 - Incident background light
 - Detector dark currents
 - Thermal noise
- During day time passes, background noise is dominated by sky radiance
 - NASA's AERONET historically monitors day time sky radiance at various locations
 - The empirical data set can be used to produce the noise distribution model for any given geometry, location, and atmospheric conditions.
- Night time passes
 - Signal dominant regime

Deterministic Optical Link Analysis: Link Margin

- Link Margin in standard optical link analysis
 - Coded performance curves
 - Chosen error correction code, e.g., SCPPM with chosen code rate and PPM order
 - Range of average noise power values
 - Required signal power is derived from the coded performance curves
 - Operational data rate (Code rate and PPM order)
 - Tolerable code word error rate
 - Received signal power
 - Signal power budget
 - Link margin to decide link closure,
 e.g., 3-dB margin is typically used to accommodate uncertainties in the link.

- Produced using CCSDS SCPPM prototype software
- Operational data rate is determined by the code rate, PPM order, and slot width
- The region above coded performance surface is the achievable region

Modeling and simulation: Statistically adjusted performance

- Statistically adjusted coded performance
 - Given the deterministic coded performance surface h(x, y), x and y are the average signal and noise photon flux rates (photons/slot)
 - Statistically adjusted coded performance can be obtained by convolving the deterministic performance with the signal and noise distributions
 - Assuming signal and noise flux rates are independent of each other, with marginal distributions of f(x) and g(y)

$$\overline{h}(x,y) = \iint h(x,y) f(x) g(y) dx dy$$

- Signal flux rate distribution
 - System-related effects: Space and ground terminals, pointing-induced fading, etc.
 - Weather-related effects: Atmospheric transmittance, turbulence-induced fading
- Background noise flux rate distributions
 - Sky Radiance
- Weather availability models can be incorporated into the modeling using weighted sum of conditional distributions to model signal and noise

Modeling and Simulation: Example (1)

Received signal is modulated by log-normal distribution : $P_r = K_s v(t)$ where

$$f_V(v) = \frac{1}{\sqrt{2\pi\sigma_I^2}} \frac{1}{v} \exp(\frac{-(\ln v + \sigma_I^2/2)^2}{2\sigma_I^2})$$

- Average noise flux rate is $K_b = 1$ photon/slot (nominal)
 - Deterministic
 - Gaussian distributed with $\sigma_b = 0.05$ photons/slot

In this nominal background noise case

- When only signal fluctuation is present
 - Fading loss: coded performance shifted to the right
- When both signal and noise fluctuations are present
 - Gap widens towards the high SNR region

Modeling and Simulation: Example (2)

Effects of turbulence-induced fading at different background noise levels

- Signal is a log-normal faded process with scintillation index of 0.014.
- Noise background is Gaussian distributed with standard deviation of 0.1 photons/slot
 - Nominal noise background
 - K_b = 1 photon/slot
 - Adverse noise background (small SEP angle, for example)
 - K_b = 2.5 photon/slot
- Effects of signal power fluctuation
 - More profound on nominal case where the tail of the noise distribution causes a transition to noise dominant regime

Modeling and Simulation: Example (3)

Statistically adjusted coded performance curves at different data rates

- Nominal noise background
 - K_b = 1.26 photon/slot
 - σ_b = 1.02 photon/slot
- Signal modulated by a lognormal distribution with $\sigma_s = 1.05$ photon/slot
- SCPPM
 - $r = \frac{1}{2}$, M = 16
 - r = 2/3, M = 8
- Effects of signal and noise fluctuations on coded performances are similar under these two configurations

Conclusion and future work

- Extension of statistical analysis framework to optical communication links
 - Performed analysis on the relationship between
 - Bit error rate requirements
 - Statistical characterization of the signal and noise power
 - Coded performance of SCPPM
 - Link analysis results
 - Intensity modulated, direct detected photon-counting channel utilizing PPM
 - Preliminary uncertainty quantifications of the signal and noise power
 - Effects of channel turbulence and background noise fluctuation can vary significantly depending on the regime of the operational points
 - Geometry, weather, operational data rate, etc.
- We plan to seek and obtain historical weather data and incorporate the CDF statistics into link analysis